3.51 \(\int (a+b x^2)^2 \cosh (c+d x) \, dx\)

Optimal. Leaf size=136 \[ \frac {a^2 \sinh (c+d x)}{d}+\frac {4 a b \sinh (c+d x)}{d^3}-\frac {4 a b x \cosh (c+d x)}{d^2}+\frac {2 a b x^2 \sinh (c+d x)}{d}+\frac {24 b^2 \sinh (c+d x)}{d^5}-\frac {24 b^2 x \cosh (c+d x)}{d^4}+\frac {12 b^2 x^2 \sinh (c+d x)}{d^3}-\frac {4 b^2 x^3 \cosh (c+d x)}{d^2}+\frac {b^2 x^4 \sinh (c+d x)}{d} \]

[Out]

-24*b^2*x*cosh(d*x+c)/d^4-4*a*b*x*cosh(d*x+c)/d^2-4*b^2*x^3*cosh(d*x+c)/d^2+24*b^2*sinh(d*x+c)/d^5+4*a*b*sinh(
d*x+c)/d^3+a^2*sinh(d*x+c)/d+12*b^2*x^2*sinh(d*x+c)/d^3+2*a*b*x^2*sinh(d*x+c)/d+b^2*x^4*sinh(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 3, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {5277, 2637, 3296} \[ \frac {a^2 \sinh (c+d x)}{d}+\frac {4 a b \sinh (c+d x)}{d^3}-\frac {4 a b x \cosh (c+d x)}{d^2}+\frac {2 a b x^2 \sinh (c+d x)}{d}+\frac {12 b^2 x^2 \sinh (c+d x)}{d^3}-\frac {4 b^2 x^3 \cosh (c+d x)}{d^2}+\frac {24 b^2 \sinh (c+d x)}{d^5}-\frac {24 b^2 x \cosh (c+d x)}{d^4}+\frac {b^2 x^4 \sinh (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^2*Cosh[c + d*x],x]

[Out]

(-24*b^2*x*Cosh[c + d*x])/d^4 - (4*a*b*x*Cosh[c + d*x])/d^2 - (4*b^2*x^3*Cosh[c + d*x])/d^2 + (24*b^2*Sinh[c +
 d*x])/d^5 + (4*a*b*Sinh[c + d*x])/d^3 + (a^2*Sinh[c + d*x])/d + (12*b^2*x^2*Sinh[c + d*x])/d^3 + (2*a*b*x^2*S
inh[c + d*x])/d + (b^2*x^4*Sinh[c + d*x])/d

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 5277

Int[Cosh[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Cosh[c + d*x], (
a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int \left (a+b x^2\right )^2 \cosh (c+d x) \, dx &=\int \left (a^2 \cosh (c+d x)+2 a b x^2 \cosh (c+d x)+b^2 x^4 \cosh (c+d x)\right ) \, dx\\ &=a^2 \int \cosh (c+d x) \, dx+(2 a b) \int x^2 \cosh (c+d x) \, dx+b^2 \int x^4 \cosh (c+d x) \, dx\\ &=\frac {a^2 \sinh (c+d x)}{d}+\frac {2 a b x^2 \sinh (c+d x)}{d}+\frac {b^2 x^4 \sinh (c+d x)}{d}-\frac {(4 a b) \int x \sinh (c+d x) \, dx}{d}-\frac {\left (4 b^2\right ) \int x^3 \sinh (c+d x) \, dx}{d}\\ &=-\frac {4 a b x \cosh (c+d x)}{d^2}-\frac {4 b^2 x^3 \cosh (c+d x)}{d^2}+\frac {a^2 \sinh (c+d x)}{d}+\frac {2 a b x^2 \sinh (c+d x)}{d}+\frac {b^2 x^4 \sinh (c+d x)}{d}+\frac {(4 a b) \int \cosh (c+d x) \, dx}{d^2}+\frac {\left (12 b^2\right ) \int x^2 \cosh (c+d x) \, dx}{d^2}\\ &=-\frac {4 a b x \cosh (c+d x)}{d^2}-\frac {4 b^2 x^3 \cosh (c+d x)}{d^2}+\frac {4 a b \sinh (c+d x)}{d^3}+\frac {a^2 \sinh (c+d x)}{d}+\frac {12 b^2 x^2 \sinh (c+d x)}{d^3}+\frac {2 a b x^2 \sinh (c+d x)}{d}+\frac {b^2 x^4 \sinh (c+d x)}{d}-\frac {\left (24 b^2\right ) \int x \sinh (c+d x) \, dx}{d^3}\\ &=-\frac {24 b^2 x \cosh (c+d x)}{d^4}-\frac {4 a b x \cosh (c+d x)}{d^2}-\frac {4 b^2 x^3 \cosh (c+d x)}{d^2}+\frac {4 a b \sinh (c+d x)}{d^3}+\frac {a^2 \sinh (c+d x)}{d}+\frac {12 b^2 x^2 \sinh (c+d x)}{d^3}+\frac {2 a b x^2 \sinh (c+d x)}{d}+\frac {b^2 x^4 \sinh (c+d x)}{d}+\frac {\left (24 b^2\right ) \int \cosh (c+d x) \, dx}{d^4}\\ &=-\frac {24 b^2 x \cosh (c+d x)}{d^4}-\frac {4 a b x \cosh (c+d x)}{d^2}-\frac {4 b^2 x^3 \cosh (c+d x)}{d^2}+\frac {24 b^2 \sinh (c+d x)}{d^5}+\frac {4 a b \sinh (c+d x)}{d^3}+\frac {a^2 \sinh (c+d x)}{d}+\frac {12 b^2 x^2 \sinh (c+d x)}{d^3}+\frac {2 a b x^2 \sinh (c+d x)}{d}+\frac {b^2 x^4 \sinh (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 85, normalized size = 0.62 \[ \frac {\left (a^2 d^4+2 a b d^2 \left (d^2 x^2+2\right )+b^2 \left (d^4 x^4+12 d^2 x^2+24\right )\right ) \sinh (c+d x)-4 b d x \left (a d^2+b \left (d^2 x^2+6\right )\right ) \cosh (c+d x)}{d^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^2*Cosh[c + d*x],x]

[Out]

(-4*b*d*x*(a*d^2 + b*(6 + d^2*x^2))*Cosh[c + d*x] + (a^2*d^4 + 2*a*b*d^2*(2 + d^2*x^2) + b^2*(24 + 12*d^2*x^2
+ d^4*x^4))*Sinh[c + d*x])/d^5

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 98, normalized size = 0.72 \[ -\frac {4 \, {\left (b^{2} d^{3} x^{3} + {\left (a b d^{3} + 6 \, b^{2} d\right )} x\right )} \cosh \left (d x + c\right ) - {\left (b^{2} d^{4} x^{4} + a^{2} d^{4} + 4 \, a b d^{2} + 2 \, {\left (a b d^{4} + 6 \, b^{2} d^{2}\right )} x^{2} + 24 \, b^{2}\right )} \sinh \left (d x + c\right )}{d^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*cosh(d*x+c),x, algorithm="fricas")

[Out]

-(4*(b^2*d^3*x^3 + (a*b*d^3 + 6*b^2*d)*x)*cosh(d*x + c) - (b^2*d^4*x^4 + a^2*d^4 + 4*a*b*d^2 + 2*(a*b*d^4 + 6*
b^2*d^2)*x^2 + 24*b^2)*sinh(d*x + c))/d^5

________________________________________________________________________________________

giac [A]  time = 0.14, size = 180, normalized size = 1.32 \[ \frac {{\left (b^{2} d^{4} x^{4} + 2 \, a b d^{4} x^{2} - 4 \, b^{2} d^{3} x^{3} + a^{2} d^{4} - 4 \, a b d^{3} x + 12 \, b^{2} d^{2} x^{2} + 4 \, a b d^{2} - 24 \, b^{2} d x + 24 \, b^{2}\right )} e^{\left (d x + c\right )}}{2 \, d^{5}} - \frac {{\left (b^{2} d^{4} x^{4} + 2 \, a b d^{4} x^{2} + 4 \, b^{2} d^{3} x^{3} + a^{2} d^{4} + 4 \, a b d^{3} x + 12 \, b^{2} d^{2} x^{2} + 4 \, a b d^{2} + 24 \, b^{2} d x + 24 \, b^{2}\right )} e^{\left (-d x - c\right )}}{2 \, d^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*cosh(d*x+c),x, algorithm="giac")

[Out]

1/2*(b^2*d^4*x^4 + 2*a*b*d^4*x^2 - 4*b^2*d^3*x^3 + a^2*d^4 - 4*a*b*d^3*x + 12*b^2*d^2*x^2 + 4*a*b*d^2 - 24*b^2
*d*x + 24*b^2)*e^(d*x + c)/d^5 - 1/2*(b^2*d^4*x^4 + 2*a*b*d^4*x^2 + 4*b^2*d^3*x^3 + a^2*d^4 + 4*a*b*d^3*x + 12
*b^2*d^2*x^2 + 4*a*b*d^2 + 24*b^2*d*x + 24*b^2)*e^(-d*x - c)/d^5

________________________________________________________________________________________

maple [B]  time = 0.05, size = 332, normalized size = 2.44 \[ \frac {\frac {b^{2} \left (\left (d x +c \right )^{4} \sinh \left (d x +c \right )-4 \left (d x +c \right )^{3} \cosh \left (d x +c \right )+12 \left (d x +c \right )^{2} \sinh \left (d x +c \right )-24 \left (d x +c \right ) \cosh \left (d x +c \right )+24 \sinh \left (d x +c \right )\right )}{d^{4}}-\frac {4 b^{2} c \left (\left (d x +c \right )^{3} \sinh \left (d x +c \right )-3 \left (d x +c \right )^{2} \cosh \left (d x +c \right )+6 \left (d x +c \right ) \sinh \left (d x +c \right )-6 \cosh \left (d x +c \right )\right )}{d^{4}}+\frac {6 b^{2} c^{2} \left (\left (d x +c \right )^{2} \sinh \left (d x +c \right )-2 \left (d x +c \right ) \cosh \left (d x +c \right )+2 \sinh \left (d x +c \right )\right )}{d^{4}}+\frac {2 b a \left (\left (d x +c \right )^{2} \sinh \left (d x +c \right )-2 \left (d x +c \right ) \cosh \left (d x +c \right )+2 \sinh \left (d x +c \right )\right )}{d^{2}}-\frac {4 b^{2} c^{3} \left (\left (d x +c \right ) \sinh \left (d x +c \right )-\cosh \left (d x +c \right )\right )}{d^{4}}-\frac {4 b c a \left (\left (d x +c \right ) \sinh \left (d x +c \right )-\cosh \left (d x +c \right )\right )}{d^{2}}+\frac {b^{2} c^{4} \sinh \left (d x +c \right )}{d^{4}}+\frac {2 b \,c^{2} a \sinh \left (d x +c \right )}{d^{2}}+a^{2} \sinh \left (d x +c \right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^2*cosh(d*x+c),x)

[Out]

1/d*(1/d^4*b^2*((d*x+c)^4*sinh(d*x+c)-4*(d*x+c)^3*cosh(d*x+c)+12*(d*x+c)^2*sinh(d*x+c)-24*(d*x+c)*cosh(d*x+c)+
24*sinh(d*x+c))-4/d^4*b^2*c*((d*x+c)^3*sinh(d*x+c)-3*(d*x+c)^2*cosh(d*x+c)+6*(d*x+c)*sinh(d*x+c)-6*cosh(d*x+c)
)+6/d^4*b^2*c^2*((d*x+c)^2*sinh(d*x+c)-2*(d*x+c)*cosh(d*x+c)+2*sinh(d*x+c))+2/d^2*b*a*((d*x+c)^2*sinh(d*x+c)-2
*(d*x+c)*cosh(d*x+c)+2*sinh(d*x+c))-4/d^4*b^2*c^3*((d*x+c)*sinh(d*x+c)-cosh(d*x+c))-4/d^2*b*c*a*((d*x+c)*sinh(
d*x+c)-cosh(d*x+c))+1/d^4*b^2*c^4*sinh(d*x+c)+2/d^2*b*c^2*a*sinh(d*x+c)+a^2*sinh(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 189, normalized size = 1.39 \[ \frac {a^{2} e^{\left (d x + c\right )}}{2 \, d} - \frac {a^{2} e^{\left (-d x - c\right )}}{2 \, d} + \frac {{\left (d^{2} x^{2} e^{c} - 2 \, d x e^{c} + 2 \, e^{c}\right )} a b e^{\left (d x\right )}}{d^{3}} - \frac {{\left (d^{2} x^{2} + 2 \, d x + 2\right )} a b e^{\left (-d x - c\right )}}{d^{3}} + \frac {{\left (d^{4} x^{4} e^{c} - 4 \, d^{3} x^{3} e^{c} + 12 \, d^{2} x^{2} e^{c} - 24 \, d x e^{c} + 24 \, e^{c}\right )} b^{2} e^{\left (d x\right )}}{2 \, d^{5}} - \frac {{\left (d^{4} x^{4} + 4 \, d^{3} x^{3} + 12 \, d^{2} x^{2} + 24 \, d x + 24\right )} b^{2} e^{\left (-d x - c\right )}}{2 \, d^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*cosh(d*x+c),x, algorithm="maxima")

[Out]

1/2*a^2*e^(d*x + c)/d - 1/2*a^2*e^(-d*x - c)/d + (d^2*x^2*e^c - 2*d*x*e^c + 2*e^c)*a*b*e^(d*x)/d^3 - (d^2*x^2
+ 2*d*x + 2)*a*b*e^(-d*x - c)/d^3 + 1/2*(d^4*x^4*e^c - 4*d^3*x^3*e^c + 12*d^2*x^2*e^c - 24*d*x*e^c + 24*e^c)*b
^2*e^(d*x)/d^5 - 1/2*(d^4*x^4 + 4*d^3*x^3 + 12*d^2*x^2 + 24*d*x + 24)*b^2*e^(-d*x - c)/d^5

________________________________________________________________________________________

mupad [B]  time = 0.12, size = 114, normalized size = 0.84 \[ \frac {\mathrm {sinh}\left (c+d\,x\right )\,\left (a^2\,d^4+4\,a\,b\,d^2+24\,b^2\right )}{d^5}-\frac {4\,b^2\,x^3\,\mathrm {cosh}\left (c+d\,x\right )}{d^2}+\frac {b^2\,x^4\,\mathrm {sinh}\left (c+d\,x\right )}{d}-\frac {4\,x\,\mathrm {cosh}\left (c+d\,x\right )\,\left (6\,b^2+a\,b\,d^2\right )}{d^4}+\frac {2\,x^2\,\mathrm {sinh}\left (c+d\,x\right )\,\left (6\,b^2+a\,b\,d^2\right )}{d^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(c + d*x)*(a + b*x^2)^2,x)

[Out]

(sinh(c + d*x)*(24*b^2 + a^2*d^4 + 4*a*b*d^2))/d^5 - (4*b^2*x^3*cosh(c + d*x))/d^2 + (b^2*x^4*sinh(c + d*x))/d
 - (4*x*cosh(c + d*x)*(6*b^2 + a*b*d^2))/d^4 + (2*x^2*sinh(c + d*x)*(6*b^2 + a*b*d^2))/d^3

________________________________________________________________________________________

sympy [A]  time = 2.10, size = 172, normalized size = 1.26 \[ \begin {cases} \frac {a^{2} \sinh {\left (c + d x \right )}}{d} + \frac {2 a b x^{2} \sinh {\left (c + d x \right )}}{d} - \frac {4 a b x \cosh {\left (c + d x \right )}}{d^{2}} + \frac {4 a b \sinh {\left (c + d x \right )}}{d^{3}} + \frac {b^{2} x^{4} \sinh {\left (c + d x \right )}}{d} - \frac {4 b^{2} x^{3} \cosh {\left (c + d x \right )}}{d^{2}} + \frac {12 b^{2} x^{2} \sinh {\left (c + d x \right )}}{d^{3}} - \frac {24 b^{2} x \cosh {\left (c + d x \right )}}{d^{4}} + \frac {24 b^{2} \sinh {\left (c + d x \right )}}{d^{5}} & \text {for}\: d \neq 0 \\\left (a^{2} x + \frac {2 a b x^{3}}{3} + \frac {b^{2} x^{5}}{5}\right ) \cosh {\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**2*cosh(d*x+c),x)

[Out]

Piecewise((a**2*sinh(c + d*x)/d + 2*a*b*x**2*sinh(c + d*x)/d - 4*a*b*x*cosh(c + d*x)/d**2 + 4*a*b*sinh(c + d*x
)/d**3 + b**2*x**4*sinh(c + d*x)/d - 4*b**2*x**3*cosh(c + d*x)/d**2 + 12*b**2*x**2*sinh(c + d*x)/d**3 - 24*b**
2*x*cosh(c + d*x)/d**4 + 24*b**2*sinh(c + d*x)/d**5, Ne(d, 0)), ((a**2*x + 2*a*b*x**3/3 + b**2*x**5/5)*cosh(c)
, True))

________________________________________________________________________________________